当前位置:主页 > 足球数据分析软件 > 正文

免费大数据分析软件中文版

时间:2020-08-06 11:42 来源:未知 编辑:admin

核心提示

大数据分析是什么?大数据分析软件有哪些?这是现在这个信息时代每一个企业管理者、经营参与者都需要了解的。今天,小编就来针对性地总结一下,什么是大数据分析,以及2019年主...

  大数据分析是什么?大数据分析软件有哪些?这是现在这个信息时代每一个企业管理者、经营参与者都需要了解的。今天,小编就来针对性地总结一下,什么是大数据分析,以及2019年主流的商业大数据分析软件。

  大数据最核心的价值就是在于对于海量数据进行存储和分析。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器……我们每天能接触到数据海洋。

  大数据分析的特点有以下几点:第一,数据体量巨大。从TB级别,跃升到PB级别。第二,数据类型繁多,包括网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。

  大数据分析软件让企业能够从数据仓库获得洞察力,从而在数据驱动的业务环境中提供重要的竞争优势。

  Hadoop 是一个能够对大量数据进行分布式处理的软件框架。能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。它处理速度非常快,并能够自动保存数据的多个副本。另外,带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。

  Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。 Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。应用于许多领域:实时分析、在线机器学习、不停顿的计算、分布式RPC、 ETL等。

  Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

  SPSS在统计分析领域有更高一筹的优势,既可以很好地进行回归分析、方差分析以及多变量分析等,又能在计算分析的同时输出图形,极高地提升工作效率。Excel 表格数据、文本格式数据均可以导入,节省了相当大的工作量。但它要求使用者懂统计学,理解一些分析模型;功能性弱于R,在数据可视化方面过于单调,较为成熟的数据分析师甚至会直接跳过SPSS,选取可视化更强的分析工具。。

  SAS相对SPSS其实功能更强大, SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开。SPSS用于市场研究较多,SAS银行金融和医学统计较多,有一些难度。

  Tableau是大数据可视化的市场领导者之一,在为大数据操作,深度学习算法和多种类型的AI应用程序提供交互式数据可视化方面尤为高效。它内置常用的分析图表,和一些数据分析模型,可以快速的探索式数据分析,可以快速地做出动态交互图。

  企业级商业智能应用平台,用户可以更直观便捷地获取信息。能满足用户自助式的数据查询和报表,OLAP,各种业务报表,制作仪表盘,在移动终端上展示,有统一服务平台支持众多的管理维护功能。但是操作体验并不是很好,界面粗糙,

  目前国内大数据分析软件的佼佼者,可以参考IDC出的《2017年中国BI市场跟踪报告》。主打的是超大数据量性能和自助式分析2个特点,最高可以支撑20亿数据的秒级呈现,适用于企业中的技术人员、业务人员和数据分析师,可以完全自主的进行探索式分析,软件在易用性和功能上做的都很不错,说实话,国内的BI行业由于起步较晚,能做到这个程度的确是下了一番功夫。相较于国外产品而言,FineIBI最大的优势在于帆软自主搭建的实施团队和服务团队,强大的服务让它成为国内首屈一指的商业智能产品。

  软件的主要作用是进行个股数据面的分析和选股的作用,软件的功能有龙虎榜、融资融券、大宗交易、股东人数、一眼看市场、东方财富L2核心内参、大盘风向标、股票资金管理8大功能!

  【大数据分析软件另类应用在足球预测实例】足球滚球走地大小球判断方法和技巧

  大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

  大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

  大数据分析最终要的应用领域之一就是分析性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而分析未来的数据。

  非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。

  5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。

  大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

  数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

  数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。

  统计分析: 假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归分析与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

  大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

  在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。

  虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

  导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

  统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

  统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

  与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到分析(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

  整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

  现在很多厂商都说自己的产品是大数据分析软件。如果只是根据功能去区分这些产品,的确是件难事,因为很多工具具有相似的特征和功能。此外,有些工具的差异是非常细微的。所以,关键区分因素可能还是要根据企业的能力以及在数据分析方面的成熟度,重点考虑如何在易用性、算法复杂性和价格之间寻找平衡。

  这里还是要推荐下小编的大数据学习,不管你是小白还是大牛,小编我都欢迎,不定期分享干货,包括小编自己整理的一份2018最新的大数据资料和0基础入门教程,欢迎初学和进阶中的小伙伴。在不忙的时间我会给解答

  分析师的专业知识和技能。有些工具的目标受众是新手用户,有的是专业数据分析师,有的则是针对这两种受众设计的。

  像IBM SPSS Modeler、RapidMiner工具、Oracle Advanced Analytics、SAP Predictive Analytics自动分析版本这些产品,通常针对的人群是没有或只有一点统计学或数据分析背景的用户。用户对数据进行分析、开发分析模型和设计分析工作流,基本不需要编程。每个厂商都把核心分析组件深藏在直观的用户界面下,引导分析师进行数据准备、分析、模型设计和验证等分析进程,但是他们采用的方法可能有所不同,尤其是把一个独立的产品(如RapidMiner)和一个套件产品(如Oracle产品)的一部分进行对比时,尤为不同。

  Alteryx和SAS EnterpriseMiner可以根据用户专业知识的水平调整功能,主要适用于这两类用户。总体而言,在支持更高级分析技术和模型评分方面,以及包括神经网络、关联分析和可视化功能等更广泛的分析功能方面,SAS Enterprise Miner和IBM的SPSS工具更加独树一帜。

  分析多样性。根据不同的用户案例和应用,企业用户可能需要支持不同类型的分析功能,使用特定类型的建模(例如回归、聚类、分割、行为建模和决策树)。这些功能已经能够广泛支持高水平、不同形式的分析建模,但是还是有一些厂商投入数十年的精力,调整不同版本的算法,增加更加高级的功能。理解哪些模型与企业面临的问题最相关,根据产品如何最好地满足用户的业务需求进行产品评估,这些都非常重要。

  越成熟和高端(也相对更昂贵)的工具具有的分析广度极大。Oracle Data Miner包括了一系列知名的机器学习方法,支持聚类、预测性挖掘和文本挖掘。IBM SPSS产品的两个版本都提供多套分析技术和模型。SAS Enterprise Miner支持许多算法和技术,包括决策树、时间序列、神经网络、线性和逻辑回归、序列和网络线路分析、购物篮分析和连接分析。

  新一代(有时价格更为便宜)产品支持不同的模型,但是算法复杂程度可能较窄。Alteryx Analytics Gallery的模型库存包含以下功能,如回归分析、决策树、关联规则分析、分类和时间序列分析。KNIME包含文本挖掘、图像挖掘和时间序列分析的方法,也从其他开源项目(如Weka、R和JFreeChart)集成机器学习算法。

  是否需要可扩展的性能,这是由企业数据量和分析需求决定的。小型企业数据量较小,使用的产品可以不具备与可用资源扩展的性能特点,例如低端工具的入门级版本(如RapidMiner、 KNIME、 微软 Revolution R Open、Alteryx Designer),可以在桌面系统上运行,不需要额外的服务器组件。

  大型企业很有可能需要分析的数据集库存更大,用户群更广。这就提出了两个额外的要求——高性能和协作便利性。产品对于高性能构架的适应性表示具有可扩展性,大多数产品可以根据Hadoop的并行性进行适应性改变,或者采用其他能够实现更快运算的方式。

  企业规模越大,越有可能需要跨部门、在诸多分析师之间分享分析、模型和应用。企业如果有很多分析师分布在各部门,对结果如何进行解释和分析,可能会需要增加更多的共享模型和协作的方法。IBM的SPSS Modeler Gold版本提供了协作功能,RapidMiner的Server产品支持共享和协作。Alteryx Analytics Gallery提供的机制能够与外部机构成员分享云端的高级分析应用。KNIME提供商业扩展,支持团队协作。SAS Enterprise Miner客户服务器构架能够通过共享模型和其他工作产品,让业务用户和数据分析师增强协同合作。

  我们可以根据厂商规模对产品进行比较。对于我们通常所说的超级大型厂商而言,大数据分析工具仅仅是众多产品工具中的一套产品而已。如果你所在的企业规模很大,通常需要和厂商谈整套产品工具在整个企业范围的企业级许可,那么可以选择像IBM、SAS、SAP或者Oracle这种超级大型厂商。

  大型厂商的大数据分析工具只是更大的工具生态系统中的一部分。可以假定,来自同一个超级大型厂商的产品至少已集成的,并且旨在一起使用。此外,有些人更喜欢与大型厂商打交道,是因为觉得大企业的顾客服务更加稳定可靠。另一方面,这样的大数据分析工具可能只可以作为更大软件许可协议的一部分才能够购买。

  规模小点的厂商,如KNIME、Alteryx和RapidMiner,收入主要来自许可授权和支持少量大数据分析产品。小型厂商可能可以让你更紧密地与他们的产品管理和创新团队进行接触,你可能可以影响产品路线图或改进功能的发展方向。在价格和许可协议所包括的特性方面,小型厂商可能更加灵活。但是,与小型厂商合作的风险也需要注意,如稳定性、用于支持的可用资源和企业可能被收购的可能性,这些都会影响客户关系。

  几乎所有厂商的产品都分不同的版本,购买费用和整个运营成本各不相同。IBM、Oracle、RapidMiner、Teradata和微软的产品根据不同级别划分版本,许可证书费用与特性、功能、对分析数据的量或者产品可使用的节点数的限制成正比。KNIME和RapidMiner提供免费或开源版本,对技术支持收费或者对企业级应用版本进行收费。相对而言,KNIME、RappidMiner和Alteryx对数量少的用户收取的许可费用较低。你如果考虑SAS和SAP的产品,需要直接找他们询价。

  大数据分析软件的市场可能让人找不到北,但是我们希望,本系列采购指南文章能够帮助你更好地理解大数据分析软件能够带给企业什么好处,帮助你更好地区分主流大数据分析产品和工具。

  这里还是要推荐下小编的大数据学习,不管你是小白还是大牛,小编我都欢迎,不定期分享干货,包括小编自己整理的一份2018最新的大数据资料和0基础入门教程,欢迎初学和进阶中的小伙伴。在不忙的时间我会给解答

  操作界面 百度网盘地址 提取码: 4ggg 大数据运用到体育赛事上具有以下五

  优点 1.可视化剖析 大数据剖析的运用者有大数据剖析专家,一起还有一般用户,可是他们二者关于...

  ,让我们一起成长吧! 工欲善其事,必先利其器。说起来道理大家都懂,只是到了要学习的时候就开始各种退缩。殊不知一款好的

  导读 大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和

  两者的根本区别在哪里,只有真正了解了,才会知晓更加适合自己的领域是大数据分析师还是

  的能力在当今时代相当重要, 智能的工具是你与竞争对手对抗并为公司业务增加优势的必备条件。我列出了30个最热门的大数据工具,供大家参考。 Part 1:数据采集工具 Part 2:开源数据工具 Part ...

  及工具 SPSS:是统计产品与服务解决方案(Statistical Product and Service Solutions)的简称,为IBM公司的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的

  、数据可视化工具、词频分析工具、舆情分析工具、PPT模板工具、互联网趋势分析工具、在线调查工具、网站分析监测工具、社交媒体监测工具等。...

  前阵子熬夜看欧冠,利物浦 3-0 击败巴萨晋级决赛,赛后一个同为球迷的朋友问我“现在大数据能

  足球比赛的胜平负或者大小球吗?” 我一听,没有做很肯定的回答。早些世界杯的时候,百度体育运用大数据的技术预测...

  」的图文,分为以下三个部分: - 数据的抓取 - 数据的分析 - 数据的可视化 我们知道国内交易股票的市场只有沪深两家,属于中心化的交易所,它们不向具有编程技能...

  已经成为日常业务中一个必不可少的组成部分。据New Vantage Partners公司对《财富》1000强公司的...说到

  都是从数据中提取一些有价值的信息,二者有很多联系,但是二者的侧重点和实现手法有所区分。 数据挖掘和

  除了需要良好的数学统计基础,对数据的敏感性,有一个熟练使用的“家伙什儿”是很重要的,那么常用的

  现如今,整个互联网已经进入大数据时代,“大数据”一词的重点现也...鉴于市面上

  工具琳琅满目日新月异,为了帮助大家少走弯路,本文将为不同技术背景的IT专业人士整理了十条

  系统的主要功能是从众多外部系统中,采集相关的业务数据,集中存储到系统的数据库中。系统内部对所有的原始数据通过一系列处理转换之后,存储到数据仓库的基础库中;然后,通过业务需要进行一系列的数据转换...

  ,帮助金融机构应对未来挑战。 现如今,互联网已经让社会生活发生根本...

  分析出的数据你就知道了。有人这么形容你也就懂了:现在小学生的童年记忆都是王者荣耀了……风趣但却不失事实的理由,让我们不得不对《王者荣耀》的圈粉能力感到佩服,看看这一年成绩单,小编...

  【最新版】Mockplus_v3.6.1.6_auto.dmg【亲测可用】最好的免费原型工具

  ABLIC推出用于汽车的S-19246系列10V工作电压和2000mA高输出电流LDO稳压器